The cubic-to-orthorhombic phase transition: rigidity and non-rigidity properties in the linear theory of elasticity
In this paper we investigate the cubic-to-orthorhombic phase transition in the framework of linear elasticity. Using convex integration techniques, we prove that this phase transition represents one of the simplest three-dimensional examples in which already the linearized theory of elasticity displ...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Book/Monograph |
| Sprache: | Englisch |
| Veröffentlicht: |
Leipzig
Max-Planck-Institut für Mathematik in den Naturwissenschaften
2013
|
| Schriftenreihe: | Preprints / Max-Planck-Institut für Mathematik in den Naturwissenschaften
2013,45 |
| In: |
Preprints (2013,45)
|
| Schlagworte: | |
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://webdoc.sub.gwdg.de/ebook/serien/e/MPI_Math_Nat/preprint2013_45.pdf |
| Verfasserangaben: | Angkana Rüland |
MARC
| LEADER | 00000cam a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 77126707X | ||
| 003 | DE-627 | ||
| 005 | 20220716123732.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 131112s2013 gw |||||ot 00| ||eng c | ||
| 035 | |a (DE-627)77126707X | ||
| 035 | |a (DE-576)9771267078 | ||
| 035 | |a (DE-599)GBV77126707X | ||
| 035 | |a (OCoLC)931447317 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
| 041 | |a eng | ||
| 044 | |c XA-DE | ||
| 084 | |a 27 |2 sdnb | ||
| 084 | |a 17,1 |2 ssgn | ||
| 084 | |a 31.00 |2 bkl | ||
| 100 | 1 | |a Rüland, Angkana |d 1987- |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 245 | 1 | 4 | |a The cubic-to-orthorhombic phase transition |b rigidity and non-rigidity properties in the linear theory of elasticity |c Angkana Rüland |
| 264 | 1 | |a Leipzig |b Max-Planck-Institut für Mathematik in den Naturwissenschaften |c 2013 | |
| 300 | |a Online-Ressource (63 S., 510 kB) | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 490 | 1 | |a Preprints / Max-Planck-Institut für Mathematik in den Naturwissenschaften |v 2013,45 | |
| 520 | |a In this paper we investigate the cubic-to-orthorhombic phase transition in the framework of linear elasticity. Using convex integration techniques, we prove that this phase transition represents one of the simplest three-dimensional examples in which already the linearized theory of elasticity displays non-rigidity properties. As a complementary result, we demonstrate that surface energy constraints rule out such highly oscillatory behaviour. We give a full characterization of all possibly emerging patterns for generic values of ō. | ||
| 655 | 7 | |a Forschungsbericht |0 (DE-588)4155043-2 |0 (DE-627)10467444X |0 (DE-576)209815833 |2 gnd-content | |
| 810 | 2 | |a Max-Planck-Institut für Mathematik in den Naturwissenschaften |g Leipzig |t Preprints |v 2013,45 |9 2013045 |w (DE-627)612840301 |w (DE-576)313444951 |w (DE-600)2525233-1 |7 am | |
| 856 | 4 | 0 | |u http://webdoc.sub.gwdg.de/ebook/serien/e/MPI_Math_Nat/preprint2013_45.pdf |q application/pdf |x Verlag |z kostenfrei |3 Volltext |
| 936 | b | k | |a 31.00 |j Mathematik: Allgemeines |0 (DE-627)106415808 |
| 951 | |a BO | ||
| 992 | |a 20210512 | ||
| 994 | |a 2013 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 1 |x j |y j | ||
| 999 | |a KXP-PPN77126707X |e 392761145X | ||
| BIB | |a Y | ||
| JSO | |a {"title":[{"title":"The cubic-to-orthorhombic phase transition","subtitle":"rigidity and non-rigidity properties in the linear theory of elasticity","title_sort":"cubic-to-orthorhombic phase transition"}],"origin":[{"dateIssuedKey":"2013","publisher":"Max-Planck-Institut für Mathematik in den Naturwissenschaften","dateIssuedDisp":"2013","publisherPlace":"Leipzig"}],"id":{"eki":["77126707X"]},"person":[{"role":"aut","display":"Rüland, Angkana","given":"Angkana","family":"Rüland"}],"name":{"displayForm":["Angkana Rüland"]},"relMultPart":[{"title":[{"title":"Preprints / Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig","title_sort":"Preprints / Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig"}],"pubHistory":["Nachgewiesen 1997,1 -"],"titleAlt":[{"title":"Preprint // Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig"}],"part":{"number_sort":["2013045"],"number":["2013,45"]},"disp":"Preprints / Max-Planck-Institut für Mathematik in den Naturwissenschaften","note":["Gesehen am 13.11.09"],"type":{"bibl":"serial","media":"Online-Ressource"},"recId":"612840301","language":["eng"],"corporate":[{"role":"aut","display":"Max-Planck-Institut für Mathematik in den Naturwissenschaften","roleDisplay":"Verfasser"}],"origin":[{"publisherPlace":"Leipzig","dateIssuedKey":"1997","dateIssuedDisp":"1997-"}],"id":{"eki":["612840301"],"zdb":["2525233-1"]},"dispAlt":"Max-Planck-Institut für Mathematik in den Naturwissenschaften <Leipzig>: Preprints","physDesc":[{"extent":"Online-Ressource"}]}],"type":{"media":"Online-Ressource","bibl":"book"},"physDesc":[{"extent":"Online-Ressource (63 S., 510 kB)"}],"recId":"77126707X","language":["eng"]} | ||
| SRT | |a RUELANDANGCUBICTOORT2013 | ||