Practical Bayesian inference: a primer for physical scientists

"Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes...

Full description

Saved in:
Bibliographic Details
Main Author: Bailer-Jones, Coryn A. L. (Author)
Format: Book/Monograph
Language:English
Published: Cambridge New York Melbourne Delhi Singapore Cambridge University Press 2017
Subjects:
Online Access:Verlag, Inhaltsverzeichnis, Inhaltsverzeichnis: http://www.gbv.de/dms/tib-ub-hannover/881096814.pdf
Get full text
Author Notes:Coryn A.L. Bailer-Jones (Max Planck Institute for Astronomy, Heidelberg)

MARC

LEADER 00000cam a2200000 c 4500
001 881096814
003 DE-627
005 20250324100203.0
007 tu
008 170228s2017 xxk||||| 00| ||eng c
010 |a  2016059505 
020 |a 1107192110  |c  : hbk. : circa EUR 98.00  |9 1-107-19211-0 
020 |a 1316642216  |c  : pbk.  |9 1-316-64221-6 
020 |a 9781107192119  |c  : hbk. : circa EUR 98.00  |9 978-1-107-19211-9 
020 |a 9781316642214  |c  : pbk.  |9 978-1-316-64221-4 
035 |a (DE-627)881096814 
035 |a (DE-576)483739839 
035 |a (DE-599)GBV881096814 
035 |a (OCoLC)1005928243 
035 |a (OCoLC)985623156 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-GB  |c XD-US  |c XE-AU 
050 0 |a QC20.7.B38 
082 0 |a 519.5/42  |q LOC  |2 23 
084 |a 29  |2 sdnb 
084 |a 27  |2 sdnb 
084 |a SK 950  |q BVB  |2 rvk  |0 (DE-625)rvk/143273: 
084 |a SK 830  |q BSZ  |2 rvk  |0 (DE-625)rvk/143259: 
084 |a 31.70  |2 bkl 
084 |a 31.73  |2 bkl 
100 1 |a Bailer-Jones, Coryn A. L.  |e VerfasserIn  |0 (DE-588)1126122696  |0 (DE-627)880784873  |0 (DE-576)416854834  |4 aut 
245 1 0 |a Practical Bayesian inference  |b a primer for physical scientists  |c Coryn A.L. Bailer-Jones (Max Planck Institute for Astronomy, Heidelberg) 
264 1 |a Cambridge  |a New York  |a Melbourne  |a Delhi  |a Singapore  |b Cambridge University Press  |c 2017 
300 |a ix, 295 Seiten  |b Illustrationen, Diagramme  |c 26 cm 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Includes bibliographical references (pages 289-209) and index 
505 8 |a Probability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems 
520 |a "Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes from complexity: data may be numerous, high dimensional, and correlated, making it difficult to see structures. This book is an introduction to statistical methods for analysing data. It presents the major concepts of probability and statistics as well as the computational tools we need to extract meaning from data in the presence of uncertainty"-- 
650 0 |a Bayesian statistical decision theory 
650 0 |a Mathematical physics 
689 0 0 |d s  |0 (DE-588)4648118-7  |0 (DE-627)333132068  |0 (DE-576)214635988  |a Bayes-Inferenz  |2 gnd 
689 0 |5 (DE-627) 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |a Bailer-Jones, Coryn A. L.  |t Practical Bayesian inference  |d Cambridge : Cambridge University Press, 2017  |h 1 Online-Ressource (ix, 295 Seiten)  |w (DE-627)1005311390  |w (DE-576)493587799  |z 9781108123891 
856 4 2 |u http://www.gbv.de/dms/tib-ub-hannover/881096814.pdf  |m V:DE-601  |m B:DE-89  |q application/pdf  |v 2018-02-06  |x Verlag  |y Inhaltsverzeichnis  |3 Inhaltsverzeichnis 
935 |i Blocktest 
936 r v |a SK 950  |b Mathematische Methoden in den Naturwissenschaften  |k Mathematik  |k Monografien  |k Mathematische Methoden in den Naturwissenschaften  |0 (DE-627)1270877593  |0 (DE-625)rvk/143273:  |0 (DE-576)200877593 
936 r v |a SK 830  |b Statistische Entscheidungstheorie  |k Mathematik  |k Monografien  |k Wahrscheinlichkeitstheorie  |k Statistische Entscheidungstheorie  |0 (DE-627)1270877526  |0 (DE-625)rvk/143259:  |0 (DE-576)200877526 
936 b k |a 31.70  |j Wahrscheinlichkeitsrechnung  |0 (DE-627)106408070 
936 b k |a 31.73  |j Mathematische Statistik  |0 (DE-627)106418998 
951 |a BO 
990 |a Bayes-Inferenz 
992 |a 20250324 
993 |a Book 
998 |g 1126122696  |a Bailer-Jones, Coryn A. L.  |m 1126122696:Bailer-Jones, Coryn A. L.  |d 130000  |e 130000PB1126122696  |k 0/130000/  |p 1  |x j  |y j 
999 |a KXP-PPN881096814  |e 4691237135 
BIB |a Y 
JSO |a {"origin":[{"publisherPlace":"Cambridge ; New York ; Melbourne ; Delhi ; Singapore","dateIssuedDisp":"2017","publisher":"Cambridge University Press","dateIssuedKey":"2017"}],"title":[{"title":"Practical Bayesian inference","subtitle":"a primer for physical scientists","title_sort":"Practical Bayesian inference"}],"id":{"eki":["881096814"],"isbn":["1107192110","1316642216","9781107192119","9781316642214"]},"person":[{"role":"aut","display":"Bailer-Jones, Coryn A. L.","roleDisplay":"VerfasserIn","given":"Coryn A. L.","family":"Bailer-Jones"}],"name":{"displayForm":["Coryn A.L. Bailer-Jones (Max Planck Institute for Astronomy, Heidelberg)"]},"physDesc":[{"noteIll":"Illustrationen, Diagramme","noteFormat":"26 cm","extent":"ix, 295 Seiten"}],"note":["Includes bibliographical references (pages 289-209) and index"],"type":{"bibl":"book"},"language":["eng"],"recId":"881096814"} 
SRT |a BAILERJONEPRACTICALB2017