Practical Bayesian inference: a primer for physical scientists

"Science is fundamentally about learning from data, and doing so in the presence of uncertainty. Uncertainty arises inevitably and avoidably in many guises. It comes from noise in our measurements: we cannot measure exactly. It comes from sampling effects: we cannot measure everything. It comes...

Full description

Saved in:
Bibliographic Details
Main Author: Bailer-Jones, Coryn A. L. (Author)
Format: Book/Monograph
Language:English
Published: Cambridge New York Melbourne Delhi Singapore Cambridge University Press 2017
Subjects:
Online Access:Verlag, Inhaltsverzeichnis, Inhaltsverzeichnis: http://www.gbv.de/dms/tib-ub-hannover/881096814.pdf
Get full text
Author Notes:Coryn A.L. Bailer-Jones (Max Planck Institute for Astronomy, Heidelberg)
Table of Contents:
  • Probability basics
  • Estimation and uncertainty
  • Statistical models and inference
  • Linear models, least squares, and maximum likelihood
  • Parameter estimation: single parameter
  • Parameter estimation: multiple parameters
  • Approximating distributions
  • Monte Carlo methods for inference
  • Parameter estimation: Markov Chain Monte Carlo
  • Frequentist hypothesis testing
  • Model comparison
  • Dealing with more complicated problems