Fast homeostatic plasticity of inhibition via activity-dependent vesicular filling

Synaptic activity in the central nervous system undergoes rapid state-dependent changes, requiring constant adaptation of the homeostasis between excitation and inhibition. The underlying mechanisms are, however, largely unclear. Chronic changes in network activity result in enhanced production of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hartmann, Kristin (VerfasserIn) , Bruehl, Claus (VerfasserIn) , Golovko, Tatyana (VerfasserIn) , Draguhn, Andreas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 20, 2008
In: PLOS ONE
Year: 2008, Jahrgang: 3, Heft: 8, Pages: 1-10
ISSN:1932-6203
DOI:10.1371/journal.pone.0002979
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1371/journal.pone.0002979
Verlag, kostenfrei, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002979
Verlag, kostenfrei, Volltext: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0002979
Verlag, kostenfrei, Volltext: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2495031
Volltext
Verfasserangaben:Kristin Hartmann, Claus Bruehl, Tatyana Golovko, Andreas Draguhn
Beschreibung
Zusammenfassung:Synaptic activity in the central nervous system undergoes rapid state-dependent changes, requiring constant adaptation of the homeostasis between excitation and inhibition. The underlying mechanisms are, however, largely unclear. Chronic changes in network activity result in enhanced production of the inhibitory transmitter GABA, indicating that presynaptic GABA content is a variable parameter for homeostatic plasticity. Here we tested whether such changes in inhibitory transmitter content do also occur at the fast time scale required to ensure inhibition-excitation-homeostasis in dynamic cortical networks. We found that intense stimulation of afferent fibers in the CA1 region of mouse hippocampal slices yielded a rapid and lasting increase in quantal size of miniature inhibitory postsynaptic currents. This potentiation was mediated by the uptake of GABA and glutamate into presynaptic endings of inhibitory interneurons (the latter serving as precursor for the synthesis of GABA). Thus, enhanced release of inhibitory and excitatory transmitters from active networks leads to enhanced presynaptic GABA content. Thereby, inhibitory efficacy follows local neuronal activity, constituting a negative feedback loop and providing a mechanism for rapid homeostatic scaling in cortical circuits.
Beschreibung:Gesehen am 18.12.2024
Beschreibung:Online Resource
ISSN:1932-6203
DOI:10.1371/journal.pone.0002979