Vanishing of Rabinowitz Floer homology on negative line bundles

Following Frauenfelder (Rabinowitz action functional on very negative line bundles, Habilitationsschrift, Munich/München, 2008), Albers and Frauenfelder (Bubbles and onis, 2014. arXiv:1412.4360) we construct Rabinowitz Floer homology for negative line bundles over symplectic manifolds and prove a v...

Full description

Saved in:
Bibliographic Details
Main Authors: Albers, Peter (Author) , Kang, Jungsoo (Author)
Format: Article (Journal)
Language:English
Published: 2017
In: Mathematische Zeitschrift
Year: 2016, Volume: 285, Issue: 1/2, Pages: 493-517
ISSN:1432-1823
DOI:10.1007/s00209-016-1718-6
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s00209-016-1718-6
Verlag, Volltext: https://link.springer.com/article/10.1007/s00209-016-1718-6
Get full text
Author Notes:Peter Albers, Jungsoo Kang
Description
Summary:Following Frauenfelder (Rabinowitz action functional on very negative line bundles, Habilitationsschrift, Munich/München, 2008), Albers and Frauenfelder (Bubbles and onis, 2014. arXiv:1412.4360) we construct Rabinowitz Floer homology for negative line bundles over symplectic manifolds and prove a vanishing result. Ritter (Adv Math 262:1035-1106, 2014) showed that symplectic homology of these spaces does not vanish, in general. Thus, the theorem SH=0⇔RFH=0\mathrm {SH}=0\Leftrightarrow \mathrm {RFH}=0 (Ritter in J Topol 6(2):391-489, 2013), does not extend beyond the symplectically aspherical situation. We give a conjectural explanation in terms of the Cieliebak-Frauenfelder-Oancea long exact sequence Cieliebak et al. (Ann Sci Éc Norm Supér (4) 43(6):957-1015, 2010).
Item Description:Published online: 20 June 2016
Gesehen am 14.08.2017
Physical Description:Online Resource
ISSN:1432-1823
DOI:10.1007/s00209-016-1718-6