Vanishing of Rabinowitz Floer homology on negative line bundles

Following Frauenfelder (Rabinowitz action functional on very negative line bundles, Habilitationsschrift, Munich/München, 2008), Albers and Frauenfelder (Bubbles and onis, 2014. arXiv:1412.4360) we construct Rabinowitz Floer homology for negative line bundles over symplectic manifolds and prove a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Kang, Jungsoo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2017
In: Mathematische Zeitschrift
Year: 2016, Jahrgang: 285, Heft: 1/2, Pages: 493-517
ISSN:1432-1823
DOI:10.1007/s00209-016-1718-6
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00209-016-1718-6
Verlag, Volltext: https://link.springer.com/article/10.1007/s00209-016-1718-6
Volltext
Verfasserangaben:Peter Albers, Jungsoo Kang
Beschreibung
Zusammenfassung:Following Frauenfelder (Rabinowitz action functional on very negative line bundles, Habilitationsschrift, Munich/München, 2008), Albers and Frauenfelder (Bubbles and onis, 2014. arXiv:1412.4360) we construct Rabinowitz Floer homology for negative line bundles over symplectic manifolds and prove a vanishing result. Ritter (Adv Math 262:1035-1106, 2014) showed that symplectic homology of these spaces does not vanish, in general. Thus, the theorem SH=0⇔RFH=0\mathrm {SH}=0\Leftrightarrow \mathrm {RFH}=0 (Ritter in J Topol 6(2):391-489, 2013), does not extend beyond the symplectically aspherical situation. We give a conjectural explanation in terms of the Cieliebak-Frauenfelder-Oancea long exact sequence Cieliebak et al. (Ann Sci Éc Norm Supér (4) 43(6):957-1015, 2010).
Beschreibung:Published online: 20 June 2016
Gesehen am 14.08.2017
Beschreibung:Online Resource
ISSN:1432-1823
DOI:10.1007/s00209-016-1718-6