Vanishing of Rabinowitz Floer homology on negative line bundles
Following Frauenfelder (Rabinowitz action functional on very negative line bundles, Habilitationsschrift, Munich/München, 2008), Albers and Frauenfelder (Bubbles and onis, 2014. arXiv:1412.4360) we construct Rabinowitz Floer homology for negative line bundles over symplectic manifolds and prove a v...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2017
|
| In: |
Mathematische Zeitschrift
Year: 2016, Volume: 285, Issue: 1/2, Pages: 493-517 |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-016-1718-6 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s00209-016-1718-6 Verlag, Volltext: https://link.springer.com/article/10.1007/s00209-016-1718-6 |
| Author Notes: | Peter Albers, Jungsoo Kang |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1562388533 | ||
| 003 | DE-627 | ||
| 005 | 20220813212118.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170814r20172016xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00209-016-1718-6 |2 doi | |
| 035 | |a (DE-627)1562388533 | ||
| 035 | |a (DE-576)492388539 | ||
| 035 | |a (DE-599)BSZ492388539 | ||
| 035 | |a (OCoLC)1340978241 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Vanishing of Rabinowitz Floer homology on negative line bundles |c Peter Albers, Jungsoo Kang |
| 264 | 1 | |c 2017 | |
| 300 | |a 25 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 20 June 2016 | ||
| 500 | |a Gesehen am 14.08.2017 | ||
| 520 | |a Following Frauenfelder (Rabinowitz action functional on very negative line bundles, Habilitationsschrift, Munich/München, 2008), Albers and Frauenfelder (Bubbles and onis, 2014. arXiv:1412.4360) we construct Rabinowitz Floer homology for negative line bundles over symplectic manifolds and prove a vanishing result. Ritter (Adv Math 262:1035-1106, 2014) showed that symplectic homology of these spaces does not vanish, in general. Thus, the theorem SH=0⇔RFH=0\mathrm {SH}=0\Leftrightarrow \mathrm {RFH}=0 (Ritter in J Topol 6(2):391-489, 2013), does not extend beyond the symplectically aspherical situation. We give a conjectural explanation in terms of the Cieliebak-Frauenfelder-Oancea long exact sequence Cieliebak et al. (Ann Sci Éc Norm Supér (4) 43(6):957-1015, 2010). | ||
| 534 | |c 2016 | ||
| 700 | 1 | |a Kang, Jungsoo |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Berlin : Springer, 1918 |g 285(2017), 1/2, Seite 493-517 |h Online-Ressource |w (DE-627)254630812 |w (DE-600)1462134-4 |w (DE-576)074529722 |x 1432-1823 |7 nnas |a Vanishing of Rabinowitz Floer homology on negative line bundles |
| 773 | 1 | 8 | |g volume:285 |g year:2017 |g number:1/2 |g pages:493-517 |g extent:25 |a Vanishing of Rabinowitz Floer homology on negative line bundles |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00209-016-1718-6 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00209-016-1718-6 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20170814 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |p 1 |x j | ||
| 999 | |a KXP-PPN1562388533 |e 2977693769 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"title":[{"title":"Mathematische Zeitschrift","title_sort":"Mathematische Zeitschrift"}],"language":["eng"],"recId":"254630812","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.12.05"],"disp":"Vanishing of Rabinowitz Floer homology on negative line bundlesMathematische Zeitschrift","part":{"year":"2017","pages":"493-517","issue":"1/2","volume":"285","text":"285(2017), 1/2, Seite 493-517","extent":"25"},"pubHistory":["1.1918 -"],"id":{"zdb":["1462134-4"],"eki":["254630812"],"issn":["1432-1823"]},"origin":[{"dateIssuedDisp":"1918-","publisher":"Springer","dateIssuedKey":"1918","publisherPlace":"Berlin ; Heidelberg"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"25 S."}],"id":{"doi":["10.1007/s00209-016-1718-6"],"eki":["1562388533"]},"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"name":{"displayForm":["Peter Albers, Jungsoo Kang"]},"recId":"1562388533","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 20 June 2016","Gesehen am 14.08.2017"],"title":[{"title":"Vanishing of Rabinowitz Floer homology on negative line bundles","title_sort":"Vanishing of Rabinowitz Floer homology on negative line bundles"}],"person":[{"roleDisplay":"VerfasserIn","display":"Albers, Peter","role":"aut","family":"Albers","given":"Peter"},{"display":"Kang, Jungsoo","roleDisplay":"VerfasserIn","role":"aut","family":"Kang","given":"Jungsoo"}]} | ||
| SRT | |a ALBERSPETEVANISHINGO2017 | ||