Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity

In this article we examine under which conditions symplectic homology with local coefficients of a unit disk bundle D^*MD∗MD^*M vanishes. For instance this is the case if the Hurewicz map \pi _2(M)\rightarrow H_2(M;{\mathbb {Z}})π2(M)→H2(M;Z)\pi _2(M)\rightarrow H_2(M;{\mathbb {Z}}) is nonzero. As a...

Full description

Saved in:
Bibliographic Details
Main Authors: Albers, Peter (Author) , Frauenfelder, Urs (Author) , Oancea, Alexandru (Author)
Format: Article (Journal)
Language:English
Published: 2017
In: Mathematische Annalen
Year: 2016, Volume: 367, Issue: 3/4, Pages: 1403-1428
ISSN:1432-1807
DOI:10.1007/s00208-016-1401-6
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s00208-016-1401-6
Verlag, Volltext: https://link.springer.com/article/10.1007/s00208-016-1401-6
Get full text
Author Notes:Peter Albers, Urs Frauenfelder, Alexandru Oancea
Description
Summary:In this article we examine under which conditions symplectic homology with local coefficients of a unit disk bundle D^*MD∗MD^*M vanishes. For instance this is the case if the Hurewicz map \pi _2(M)\rightarrow H_2(M;{\mathbb {Z}})π2(M)→H2(M;Z)\pi _2(M)\rightarrow H_2(M;{\mathbb {Z}}) is nonzero. As an application we prove finiteness of the \pi _1π1\pi _1-sensitive Hofer-Zehnder capacity of unit disk bundles in these cases. We also prove uniruledness for such cotangent bundles. Moreover, we find an obstruction to the existence of H-space structures on general topological spaces, formulated in terms of local systems.
Item Description:Published online: 26 March 2016
Gesehen am 14.08.2017
Physical Description:Online Resource
ISSN:1432-1807
DOI:10.1007/s00208-016-1401-6