Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity
In this article we examine under which conditions symplectic homology with local coefficients of a unit disk bundle D^*MD∗MD^*M vanishes. For instance this is the case if the Hurewicz map \pi _2(M)\rightarrow H_2(M;{\mathbb {Z}})π2(M)→H2(M;Z)\pi _2(M)\rightarrow H_2(M;{\mathbb {Z}}) is nonzero. As a...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2017
|
| In: |
Mathematische Annalen
Year: 2016, Volume: 367, Issue: 3/4, Pages: 1403-1428 |
| ISSN: | 1432-1807 |
| DOI: | 10.1007/s00208-016-1401-6 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s00208-016-1401-6 Verlag, Volltext: https://link.springer.com/article/10.1007/s00208-016-1401-6 |
| Author Notes: | Peter Albers, Urs Frauenfelder, Alexandru Oancea |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1562389149 | ||
| 003 | DE-627 | ||
| 005 | 20241119014754.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170814r20172016xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00208-016-1401-6 |2 doi | |
| 035 | |a (DE-627)1562389149 | ||
| 035 | |a (DE-576)492389144 | ||
| 035 | |a (DE-599)BSZ492389144 | ||
| 035 | |a (OCoLC)1340978427 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity |c Peter Albers, Urs Frauenfelder, Alexandru Oancea |
| 264 | 1 | |c 2017 | |
| 300 | |a 26 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 26 March 2016 | ||
| 500 | |a Gesehen am 14.08.2017 | ||
| 520 | |a In this article we examine under which conditions symplectic homology with local coefficients of a unit disk bundle D^*MD∗MD^*M vanishes. For instance this is the case if the Hurewicz map \pi _2(M)\rightarrow H_2(M;{\mathbb {Z}})π2(M)→H2(M;Z)\pi _2(M)\rightarrow H_2(M;{\mathbb {Z}}) is nonzero. As an application we prove finiteness of the \pi _1π1\pi _1-sensitive Hofer-Zehnder capacity of unit disk bundles in these cases. We also prove uniruledness for such cotangent bundles. Moreover, we find an obstruction to the existence of H-space structures on general topological spaces, formulated in terms of local systems. | ||
| 534 | |c 2016 | ||
| 700 | 1 | |8 1\p |a Frauenfelder, Urs |e VerfasserIn |0 (DE-588)1161757171 |0 (DE-627)1025212304 |0 (DE-576)506854930 |4 aut | |
| 700 | 1 | |a Oancea, Alexandru |e VerfasserIn |0 (DE-588)1130680657 |0 (DE-627)884873196 |0 (DE-576)486911233 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematische Annalen |d Berlin : Springer, 1869 |g 367(2017), 3/4, Seite 1403-1428 |h Online-Ressource |w (DE-627)254630715 |w (DE-600)1462120-4 |w (DE-576)074529668 |x 1432-1807 |7 nnas |a Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity |
| 773 | 1 | 8 | |g volume:367 |g year:2017 |g number:3/4 |g pages:1403-1428 |g extent:26 |a Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00208-016-1401-6 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00208-016-1401-6 |x Verlag |3 Volltext |
| 883 | |8 1\p |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 951 | |a AR | ||
| 992 | |a 20170814 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PA129903817 |e 110100PA129903817 |e 110000PA129903817 |e 110400PA129903817 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1562389149 |e 2977694609 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"display":"Albers, Peter","roleDisplay":"VerfasserIn","role":"aut","family":"Albers","given":"Peter"},{"family":"Frauenfelder","given":"Urs","roleDisplay":"VerfasserIn","display":"Frauenfelder, Urs","role":"aut"},{"family":"Oancea","given":"Alexandru","roleDisplay":"VerfasserIn","display":"Oancea, Alexandru","role":"aut"}],"title":[{"title_sort":"Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity","title":"Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity"}],"language":["eng"],"recId":"1562389149","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 26 March 2016","Gesehen am 14.08.2017"],"name":{"displayForm":["Peter Albers, Urs Frauenfelder, Alexandru Oancea"]},"id":{"doi":["10.1007/s00208-016-1401-6"],"eki":["1562389149"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"relHost":[{"recId":"254630715","language":["eng"],"disp":"Local systems on the free loop space and finiteness of the Hofer-Zehnder capacityMathematische Annalen","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 02.12.05"],"part":{"extent":"26","volume":"367","text":"367(2017), 3/4, Seite 1403-1428","pages":"1403-1428","issue":"3/4","year":"2017"},"pubHistory":["1.1869 -"],"title":[{"title":"Mathematische Annalen","title_sort":"Mathematische Annalen"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1432-1807"],"zdb":["1462120-4"],"eki":["254630715"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1869-","publisher":"Springer","dateIssuedKey":"1869"}]}],"physDesc":[{"extent":"26 S."}]} | ||
| SRT | |a ALBERSPETELOCALSYSTE2017 | ||