Coupling vs decoupling approaches for PDE/ODE systems modeling intercellular signaling
We consider PDE/ODE systems for the simulation of intercellular signaling in multicellular environments. The intracellular processes for each cell described here by ODEs determine the long-time dynamics, but the PDE part dominates the solving effort. Thus, it is not clear if commonly used decoupling...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 March 2016
|
| In: |
Journal of computational physics
Year: 2016, Jahrgang: 314, Pages: 522-537 |
| ISSN: | 1090-2716 |
| DOI: | 10.1016/j.jcp.2016.03.020 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1016/j.jcp.2016.03.020 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0021999116001728 |
| Verfasserangaben: | Thomas Carraro, Elfriede Friedmann, Daniel Gerecht |
| Zusammenfassung: | We consider PDE/ODE systems for the simulation of intercellular signaling in multicellular environments. The intracellular processes for each cell described here by ODEs determine the long-time dynamics, but the PDE part dominates the solving effort. Thus, it is not clear if commonly used decoupling methods can outperform a coupling approach. Based on a sensitivity analysis, we present a systematic comparison between coupling and decoupling approaches for this class of problems and show numerical results. For biologically relevant configurations of the model, our quantitative study shows that a coupling approach performs much better than a decoupling one. |
|---|---|
| Beschreibung: | Gesehen am 30.08.2017 |
| Beschreibung: | Online Resource |
| ISSN: | 1090-2716 |
| DOI: | 10.1016/j.jcp.2016.03.020 |