Complex temporal association in neural networks

Models of temporal association in neural networks are generalised to provide mechanisms for decision making and loop control. Systems equipped with these capabilities can handle situations where a succession of states is not unambiguously defined and the system has to choose which out of several, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kühn, Reimer (VerfasserIn) , Hemmen, Jan L. van (VerfasserIn) , Riedel, Uwe (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [1989]
In: Journal of physics. A, Mathematical and theoretical
Year: 1989, Jahrgang: 22, Heft: 15, Pages: 3123-3135
ISSN:1751-8121
DOI:10.1088/0305-4470/22/15/026
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1088/0305-4470/22/15/026
Verlag, Volltext: http://stacks.iop.org/0305-4470/22/i=15/a=026
Volltext
Verfasserangaben:R. Kühn, J.L. van Hemmen and U. Riedel (Sonderforschungsbereich 123, Universitlt Heidelberg)
Beschreibung
Zusammenfassung:Models of temporal association in neural networks are generalised to provide mechanisms for decision making and loop control. Systems equipped with these capabilities can handle situations where a succession of states is not unambiguously defined and the system has to choose which out of several, in principle equivalent, paths it is going to follow. The choice is made on the basis of past experience of the network. No short-term synaptic plasticity is needed.
Beschreibung:Gesehen am 20.09.2017
Elektronische Reproduktion der Druckausgabe
Beschreibung:Online Resource
ISSN:1751-8121
DOI:10.1088/0305-4470/22/15/026