A new algorithm for optimizing the wavelength coverage for spectroscopic studies: Spectral Wavelength Optimization Code (SWOC)

The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extra-galactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when d...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruchti, Gregory R. (Author) , Caffau, Elisabetta (Author) , Hansen, Camilla Juul (Author) , Koch-Hansen, Andreas (Author) , Sbordone, Luca (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 3 June 2016
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1606.00833
Get full text
Author Notes:G.R. Ruchti, S. Feltzing, K. Lind, E. Caffau, A.J. Korn, O. Schnurr, C.J. Hansen, A. Koch, L. Sbordone, R.S. de Jong
Description
Summary:The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extra-galactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when designing a spectrograph for the future. Among these is the determination of the optimum wavelength coverage. In this work, we present a new code for determining the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a given survey. In its first mode, it utilizes a user-defined list of spectral features to compute a figure-of-merit for different spectral configurations. The second mode utilizes a set of flux-calibrated spectra, determining the spectral regions that show the largest differences among the spectra. Our algorithm is easily adaptable for any set of science requirements and any spectrograph design. We apply the algorithm to several examples, including 4MOST, showing the method yields important design constraints to the wavelength regions.
Item Description:Gesehen am 13.10.2017
Physical Description:Online Resource