Variations of cosmic large-scale structure covariance matrices across parameter space

The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the non-linear evolution of the cosmic web. As highly non-linear clustering to date has only been described by numerical N-body simulations in a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reischke, Robert (VerfasserIn) , Kiessling, Alina (VerfasserIn) , Schäfer, Björn Malte (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 November 2016
In: Monthly notices of the Royal Astronomical Society
Year: 2017, Jahrgang: 465, Heft: 4, Pages: 4016-4025
ISSN:1365-2966
DOI:10.1093/mnras/stw2976
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1093/mnras/stw2976
Volltext
Verfasserangaben:Robert Reischke, Alina Kiessling and Björn Malte Schäfer
Beschreibung
Zusammenfassung:The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the non-linear evolution of the cosmic web. As highly non-linear clustering to date has only been described by numerical N-body simulations in a reliable and sufficiently precise way, the necessary computational costs for estimating those covariances at different points in parameter space are tremendous. In this work, we describe the change of the matter covariance and the weak lensing covariance matrix as a function of cosmological parameters by constructing a suitable basis, where we model the contribution to the covariance from non-linear structure formation using Eulerian perturbation theory at third order. We show that our formalism is capable of dealing with large matrices and reproduces expected degeneracies and scaling with cosmological parameters in a reliable way. Comparing our analytical results to numerical simulations, we find that the method describes the variation of the covariance matrix found in the SUNGLASS weak lensing simulation pipeline within the errors at one-loop and tree-level for the spectrum and the trispectrum, respectively, for multipoles up to ℓ ≤ 1300. We show that it is possible to optimize the sampling of parameter space where numerical simulations should be carried out by minimizing interpolation errors and propose a corresponding method to distribute points in parameter space in an economical way.
Beschreibung:Gesehen am 25.10.2017
Beschreibung:Online Resource
ISSN:1365-2966
DOI:10.1093/mnras/stw2976