Fourier transformation and response functions
We improve on Fourier transforms (FTs) between imaginary time τ and imaginary frequency ωn used in certain quantum cluster approaches using the Hirsch-Fye method. The asymptotic behavior of the electron Green’s function can be improved by using a “sum-rule” boundary condition for a spline. For respo...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
13 December 2010
|
| In: |
Physical review. B, Condensed matter and materials physics
Year: 2010, Jahrgang: 82, Heft: 23, Pages: 233104 |
| ISSN: | 1550-235X |
| DOI: | 10.1103/PhysRevB.82.233104 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevB.82.233104 Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.82.233104 |
| Verfasserangaben: | O. Gunnarsson, G. Sangiovanni, A. Valli, and M.W. Haverkort |
| Zusammenfassung: | We improve on Fourier transforms (FTs) between imaginary time τ and imaginary frequency ωn used in certain quantum cluster approaches using the Hirsch-Fye method. The asymptotic behavior of the electron Green’s function can be improved by using a “sum-rule” boundary condition for a spline. For response functions a two-dimensional FT of a singular function is required. We show how this can be done efficiently by splitting off a one-dimensional part containing the singularity and by performing a semianalytical FT for the remaining more innocent two-dimensional part. |
|---|---|
| Beschreibung: | Gesehen am 06.11.2017 |
| Beschreibung: | Online Resource |
| ISSN: | 1550-235X |
| DOI: | 10.1103/PhysRevB.82.233104 |