Fourier transformation and response functions

We improve on Fourier transforms (FTs) between imaginary time τ and imaginary frequency ωn used in certain quantum cluster approaches using the Hirsch-Fye method. The asymptotic behavior of the electron Green’s function can be improved by using a “sum-rule” boundary condition for a spline. For respo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gunnarsson, Olle (VerfasserIn) , Haverkort, Maurits W. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 December 2010
In: Physical review. B, Condensed matter and materials physics
Year: 2010, Jahrgang: 82, Heft: 23, Pages: 233104
ISSN:1550-235X
DOI:10.1103/PhysRevB.82.233104
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevB.82.233104
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.82.233104
Volltext
Verfasserangaben:O. Gunnarsson, G. Sangiovanni, A. Valli, and M.W. Haverkort
Beschreibung
Zusammenfassung:We improve on Fourier transforms (FTs) between imaginary time τ and imaginary frequency ωn used in certain quantum cluster approaches using the Hirsch-Fye method. The asymptotic behavior of the electron Green’s function can be improved by using a “sum-rule” boundary condition for a spline. For response functions a two-dimensional FT of a singular function is required. We show how this can be done efficiently by splitting off a one-dimensional part containing the singularity and by performing a semianalytical FT for the remaining more innocent two-dimensional part.
Beschreibung:Gesehen am 06.11.2017
Beschreibung:Online Resource
ISSN:1550-235X
DOI:10.1103/PhysRevB.82.233104