Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O(N)-symmetric scal...

Full description

Saved in:
Bibliographic Details
Main Authors: Berges, Jürgen (Author) , Boguslavski, Kirill (Author) , Chatrchyan, Aleksandr (Author) , Jaeckel, Joerg (Author)
Format: Article (Journal)
Language:English
Published: 30 October 2017
In: Physical review
Year: 2017, Volume: 96, Issue: 7
ISSN:2470-0029
DOI:10.1103/PhysRevD.96.076020
Online Access:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevD.96.076020
Get full text
Author Notes:J. Berges, K. Boguslavski, A. Chatrchyan, and J. Jaeckel
Description
Summary:We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O(N)-symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1/N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N≥2, the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.
Item Description:Gesehen am 09.11.2017
Physical Description:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.96.076020