Optimizing parameter constraints: a new tool for Fisher matrix forecasts

In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially in the case of many parameters, a lengthy process...

Full description

Saved in:
Bibliographic Details
Main Authors: Amendola, Luca (Author) , Sellentin, Elena (Author)
Format: Article (Journal)
Language:English
Published: 04 February 2016
In: Monthly notices of the Royal Astronomical Society
Year: 2016, Volume: 457, Issue: 2, Pages: 1490-1495
ISSN:1365-2966
DOI:10.1093/mnras/stw072
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1093/mnras/stw072
Get full text
Author Notes:Luca Amendola and Elena Sellentin
Description
Summary:In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially in the case of many parameters, a lengthy process of guesswork is then needed to determine the most efficient way to improve one parameter's constraints. In this short paper, we highlight an extremely simple analytical expression that replaces the guesswork and that facilitates a deeper understanding of optimization with interdependent parameters.
Item Description:Gesehen am 11.10.2017
Physical Description:Online Resource
ISSN:1365-2966
DOI:10.1093/mnras/stw072