Optimizing parameter constraints: a new tool for Fisher matrix forecasts

In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially in the case of many parameters, a lengthy process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amendola, Luca (VerfasserIn) , Sellentin, Elena (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 February 2016
In: Monthly notices of the Royal Astronomical Society
Year: 2016, Jahrgang: 457, Heft: 2, Pages: 1490-1495
ISSN:1365-2966
DOI:10.1093/mnras/stw072
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1093/mnras/stw072
Volltext
Verfasserangaben:Luca Amendola and Elena Sellentin
Beschreibung
Zusammenfassung:In a Bayesian context, theoretical parameters are correlated random variables. Then, the constraints on one parameter can be improved by either measuring this parameter more precisely - or by measuring the other parameters more precisely. Especially in the case of many parameters, a lengthy process of guesswork is then needed to determine the most efficient way to improve one parameter's constraints. In this short paper, we highlight an extremely simple analytical expression that replaces the guesswork and that facilitates a deeper understanding of optimization with interdependent parameters.
Beschreibung:Gesehen am 11.10.2017
Beschreibung:Online Resource
ISSN:1365-2966
DOI:10.1093/mnras/stw072