Solar system constraints on Gauss-Bonnet mediated dark energy

Although the Gauss-Bonnet term is a topological invariant for general relativity, it couples naturally to a quintessence scalar field, modifying gravity at solar system scales. We determine the solar system constraints due to this term by evaluating the post-Newtonian metric for a distributional sou...

Full description

Saved in:
Bibliographic Details
Main Authors: Amendola, Luca (Author) , Charmousis, Christos (Author) , Davis, Stephen C. (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2007
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/0704.0175
Get full text
Author Notes:Luca Amendola, Christos Charmousis and Stephen C. Davis
Description
Summary:Although the Gauss-Bonnet term is a topological invariant for general relativity, it couples naturally to a quintessence scalar field, modifying gravity at solar system scales. We determine the solar system constraints due to this term by evaluating the post-Newtonian metric for a distributional source. We find a mass dependent, 1/r^7 correction to the Newtonian potential, and also deviations from the Einstein gravity prediction for light-bending. We constrain the parameters of the theory using planetary orbits, the Cassini spacecraft data, and a laboratory test of Newton's law, always finding extremely tight bounds on the energy associated to the Gauss-Bonnet term. We discuss the relevance of these constraints to late-time cosmological acceleration.
Item Description:Gesehen am 15.11.2017
Physical Description:Online Resource