Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order

We calculate the tt¯tt¯ t\overline t forward-backward asymmetry, AtFB, in Randall-Sundrum (RS) models taking into account the dominant next-to-leading order (NLO) corrections in QCD. At Born level we include the exchange of Kaluza-Klein (KK) gluons and photons, the Z boson and its KK excitations, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bauer, Martin (VerfasserIn) , Westhoff, Susanne (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 November 2010
In: Journal of high energy physics
Year: 2010, Heft: 11
ISSN:1029-8479
DOI:10.1007/JHEP11(2010)039
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1007/JHEP11(2010)039
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/JHEP11(2010)039
Volltext
Verfasserangaben:M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff
Beschreibung
Zusammenfassung:We calculate the tt¯tt¯ t\overline t forward-backward asymmetry, AtFB, in Randall-Sundrum (RS) models taking into account the dominant next-to-leading order (NLO) corrections in QCD. At Born level we include the exchange of Kaluza-Klein (KK) gluons and photons, the Z boson and its KK excitations, as well as the Higgs boson, whereas beyond the leading order (LO) we consider the interference of tree-level KK-gluon exchange with one-loop QCD box diagrams and the corresponding bremsstrahlungs corrections. We find that the strong suppression of LO effects, that arises due to the elementary nature and the mostly vector-like couplings of light quarks, is lifted at NLO after paying the price of an additional factor of αs/(4π). In spite of this enhancement, the resulting RS corrections in AtFB remain marginal, leaving the predicted asymmetry SM-like. As our arguments are solely based on the smallness of the axial-vector couplings of light quarks to the strong sector, our findings are model-independent and apply to many scenarios of new physics that address the flavor problem via geometrical sequestering.
Beschreibung:Gesehen am 21.11.2017
Beschreibung:Online Resource
ISSN:1029-8479
DOI:10.1007/JHEP11(2010)039