Implementing quantum electrodynamics with ultracold atomic systems

We discuss the experimental engineering of model systems for the description of QED in one spatial dimension via a mixture of bosonic $^{23}$Na and fermionic $^6$Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions wh...

Full description

Saved in:
Bibliographic Details
Main Authors: Kasper, Valentin (Author) , Hebenstreit, Florian (Author) , Jendrzejewski, Fred (Author) , Oberthaler, Markus K. (Author) , Berges, Jürgen (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2017
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1608.03480
Get full text
Author Notes:V. Kasper, F. Hebenstreit, F. Jendrzejewski, M.K. Oberthaler, and J. Berges
Description
Summary:We discuss the experimental engineering of model systems for the description of QED in one spatial dimension via a mixture of bosonic $^{23}$Na and fermionic $^6$Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system's parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.
Item Description:Gesehen am 22.11.2017
Physical Description:Online Resource