Solving nonperturbative flow equations

Nonperturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behavior, with associated critical e...

Full description

Saved in:
Bibliographic Details
Main Authors: Adams, Jennifer A. (Author) , Berges, Jürgen (Author) , Freire, Filipe (Author) , Wetterich, Christof (Author)
Format: Article (Journal)
Language:English
Published: 1995
In: Modern physics letters
Year: 1995, Volume: 10, Issue: 31, Pages: 2367-2379
ISSN:1793-6632
DOI:10.1142/S0217732395002520
Online Access:Verlag, Volltext: http://dx.doi.org/10.1142/S0217732395002520
Verlag, Volltext: http://www.worldscientific.com/doi/abs/10.1142/S0217732395002520
Get full text
Author Notes:J. Adams, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK; N. Tetradis, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK; J. Berges, Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; F. Freire, Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; C. Wetterich, Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; S. Bornholdt, Institut für Theoretische Physik, Universität Kiel, Olshausenstr. 6, 24118 Kiel, Germany
Description
Summary:Nonperturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behavior, with associated critical exponents, can be inferred with good accuracy.
Item Description:Gesehen am 22.11.2017
Physical Description:Online Resource
ISSN:1793-6632
DOI:10.1142/S0217732395002520