Solving nonperturbative flow equations
Nonperturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behavior, with associated critical e...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
1995
|
| In: |
Modern physics letters
Year: 1995, Volume: 10, Issue: 31, Pages: 2367-2379 |
| ISSN: | 1793-6632 |
| DOI: | 10.1142/S0217732395002520 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1142/S0217732395002520 Verlag, Volltext: http://www.worldscientific.com/doi/abs/10.1142/S0217732395002520 |
| Author Notes: | J. Adams, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK; N. Tetradis, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK; J. Berges, Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; F. Freire, Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; C. Wetterich, Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; S. Bornholdt, Institut für Theoretische Physik, Universität Kiel, Olshausenstr. 6, 24118 Kiel, Germany |
| Summary: | Nonperturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behavior, with associated critical exponents, can be inferred with good accuracy. |
|---|---|
| Item Description: | Gesehen am 22.11.2017 |
| Physical Description: | Online Resource |
| ISSN: | 1793-6632 |
| DOI: | 10.1142/S0217732395002520 |