High temperature pairing in a strongly interacting two-dimensional Fermi gas
We observe many-body pairing in a two-dimensional gas of ultracold fermionic atoms at temperatures far above the critical temperature for superfluidity. For this, we use spatially resolved radio-frequency spectroscopy to measure pairing energies spanning a wide range of temperatures and interaction...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2017
|
| In: |
Arxiv
|
| Online Access: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1705.10577 |
| Author Notes: | P.A. Murthy, M. Neidig, R. Klemt, L. Bayha, I. Boettcher, T. Enss, M. Holten, G. Zürn, P.M. Preiss, and S. Jochim |
| Summary: | We observe many-body pairing in a two-dimensional gas of ultracold fermionic atoms at temperatures far above the critical temperature for superfluidity. For this, we use spatially resolved radio-frequency spectroscopy to measure pairing energies spanning a wide range of temperatures and interaction strengths. In the strongly interacting regime where the scattering length between fermions is on the same order as the inter-particle spacing, the pairing energy in the normal phase significantly exceeds the intrinsic two-body binding energy of the system and shows a clear dependence on local density. This implies that pairing in this regime is driven by many-body correlations, rather than two-body physics. We find this effect to persist at temperatures close to the Fermi temperature which demonstrates that pairing correlations in strongly interacting two-dimensional fermionic systems are remarkably robust against thermal fluctuations. |
|---|---|
| Item Description: | Gesehen am 22.11.2017 |
| Physical Description: | Online Resource |