Observation of quantum-limited spin transport in strongly interacting two-dimensional fermi gases
We measure the transport properties of two-dimensional ultracold Fermi gases during transverse demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we are able to distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by t...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1612.00815 |
| Verfasserangaben: | C. Luciuk, S. Smale, F. Böttcher, H. Sharum, B.A. Olsen, S. Trotzky, T. Enss, and J.H. Thywissen |
| Zusammenfassung: | We measure the transport properties of two-dimensional ultracold Fermi gases during transverse demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we are able to distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by the precession of spin current around the local magnetization. When the two-dimensional scattering length is tuned to be comparable to the inverse Fermi wave vector $k_F^{-1}$, we find that the bare transverse spin diffusivity reaches a minimum of $1.7(6)\hbar/m$, where $m$ is the bare particle mass. The rate of demagnetization is also reflected in the growth rate of the s-wave contact, observed using time-resolved spectroscopy. At unitarity, the contact rises to $0.28(3) k_F^2$ per particle, measuring the breaking of scaling symmetry. Our observations support the conjecture that in systems with strong scattering, the local relaxation rate is bounded from above by $k_B T/\hbar$. |
|---|---|
| Beschreibung: | Gesehen am 23.11.2017 |
| Beschreibung: | Online Resource |