Quantum mechanical limitations to spin diffusion in the unitary Fermi gas

We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward theory. In the quantum degenerate regime the spin diffusivity attains a minimum value of $D_s \simeq 1.3 \hbar/m$ approaching the quantum limit of diffusion for a particle of mass $m$. Conversely, the spin dr...

Full description

Saved in:
Bibliographic Details
Main Authors: Enss, Tilman (Author) , Haussmann, Rudolf (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2012
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1207.3103
Get full text
Author Notes:Tilman Enss, Physik Department, Technische Universität München, D-85747 Garching, Germany; Rudolf Haussmann, Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
Description
Summary:We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward theory. In the quantum degenerate regime the spin diffusivity attains a minimum value of $D_s \simeq 1.3 \hbar/m$ approaching the quantum limit of diffusion for a particle of mass $m$. Conversely, the spin drag rate reaches a maximum value of $\Gamma_\sd \simeq 1.2 k_B T_F/\hbar$ in terms of the Fermi temperature $T_F$. The frequency-dependent spin conductivity $\sigma_s(\omega)$ exhibits a broad Drude peak, with spectral weight transferred to a universal high-frequency tail $\sigma_s(\omega \to\infty) = \hbar^{1/2}C/3\pi(m\omega)^{3/2}$ proportional to the Tan contact density $C$. For the spin susceptibility $\chi_s(T)$ we find no downturn in the normal phase.
Item Description:Gesehen am 23.11.2017
Physical Description:Online Resource