Renormalization-group analysis of the one-dimensional extended Hubbard model with a single impurity

We analyze the one-dimensional extended Hubbard model with a single static impurity by using a computational technique based on the functional renormalization group. This extends previous work for spinless fermions to spin-1/2 fermions. The underlying approximations are devised for weak interactions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Andergassen, Sandra (VerfasserIn) , Enss, Tilman (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2006
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/cond-mat/0509021
Volltext
Verfasserangaben:S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck, and K. Schönhammer
Beschreibung
Zusammenfassung:We analyze the one-dimensional extended Hubbard model with a single static impurity by using a computational technique based on the functional renormalization group. This extends previous work for spinless fermions to spin-1/2 fermions. The underlying approximations are devised for weak interactions and arbitrary impurity strengths, and have been checked by comparing with density-matrix renormalization-group data. We present results for the density of states, the density profile and the linear conductance. Two-particle backscattering leads to striking effects, which are not captured if the bulk system is approximated by its low-energy fixed point, the Luttinger model. In particular, the expected decrease of spectral weight near the impurity and of the conductance at low energy scales is often preceded by a pronounced increase, and the asymptotic power laws are modified by logarithmic corrections.
Beschreibung:Gesehen am 24.11.2017
Beschreibung:Online Resource