Photoelectron spin-polarization-control in the topological insulator Bi2Se3
We study the manipulation of the photoelectron spin-polarization in Bi$_2$Se$_3$ by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the spin-polarization of photoemitted electrons via light polarization, sample orientation, and photon energy...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2014
|
| In: |
Arxiv
|
| Online Access: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1401.1224 |
| Author Notes: | Z.-H. Zhu, C.N. Veenstra, S. Zhdanovich, M.P. Schneider, T. Okuda, K. Miyamoto, S.-Y. Zhu, H. Namatame, M. Taniguchi, M.W. Haverkort, I.S. Elfimov, and A. Damascelli |
| Summary: | We study the manipulation of the photoelectron spin-polarization in Bi$_2$Se$_3$ by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the spin-polarization of photoemitted electrons via light polarization, sample orientation, and photon energy. We demonstrate the $\pm$100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as a full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture. |
|---|---|
| Item Description: | Die Ziffern 2 und 3 im Titel sind tiefgestellt Gesehen am 24.11.2017 |
| Physical Description: | Online Resource |