Fourier transformation and response functions

We improve on Fourier transforms (FT) between imaginary time $\tau$ and imaginary frequency $\omega_n$ used in certain quantum cluster approaches using the Hirsch-Fye method. The asymptotic behavior of the electron Green's function can be improved by using a "sumrule" boundary conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gunnarsson, Olle (VerfasserIn) , Haverkort, Maurits W. (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2010
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1009.1804
Volltext
Verfasserangaben:O. Gunnarsson, G. Sangiovanni, A. Valli and M.W. Haverkort
Beschreibung
Zusammenfassung:We improve on Fourier transforms (FT) between imaginary time $\tau$ and imaginary frequency $\omega_n$ used in certain quantum cluster approaches using the Hirsch-Fye method. The asymptotic behavior of the electron Green's function can be improved by using a "sumrule" boundary condition for a spline. For response functions a two-dimensional FT of a singular function is required. We show how this can be done efficiently by splitting off a one-dimensional part containing the singularity and by performing a semi-analytical FT for the remaining more innocent two-dimensional part.
Beschreibung:Gesehen am27.11.2017
Beschreibung:Online Resource