Gluon condensation and scaling exponents for the propagators in Yang-Mills theory
We investigate the infrared (strong-coupling) regime of SU(N)-Yang-Mills theory on a self-dual background. We present an evaluation of the full effective potential for the field strength invariant F_{\mu {\nu}}F^{\mu {\nu}} from non-perturbative gauge correlation functions and find a non-trivial min...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2011
|
| In: |
Arxiv
|
| Online Access: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1010.2153 |
| Author Notes: | Astrid Eichhorn, Holger Gies, and Jan M. Pawlowski |
| Summary: | We investigate the infrared (strong-coupling) regime of SU(N)-Yang-Mills theory on a self-dual background. We present an evaluation of the full effective potential for the field strength invariant F_{\mu {\nu}}F^{\mu {\nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the beta function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators. Consistency between both gauges in the infrared imposes a new upper bound on the infrared exponents of the propagators. For the scaling solution, this bound reads kappa_c < 23/38 which, together with Zwanziger's horizon condition kappa_c> 1/2, defines a rather narrow window for this critical exponent. Current estimates from functional methods indeed satisfy these bounds. |
|---|---|
| Item Description: | Gesehen am 01.12.2017 |
| Physical Description: | Online Resource |