Exact renormalization group and [phi]-derivable approximations

We show that the so-called Φ-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Φ-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization group...

Full description

Saved in:
Bibliographic Details
Main Authors: Blaizot, Jean-Paul (Author) , Pawlowski, Jan M. (Author) , Reinosa, Urko (Author)
Format: Article (Journal)
Language:English
Published: 2011
In: Physics letters
Year: 2010, Volume: 696, Issue: 5, Pages: 523-528
ISSN:1873-2445
DOI:10.1016/j.physletb.2010.12.058
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/j.physletb.2010.12.058
Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/S0370269310014619
Get full text
Author Notes:Jean-Paul Blaizot, Jan M. Pawlowski, Urko Reinosa
Description
Summary:We show that the so-called Φ-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Φ-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization group flow equations. On the other hand, the flow equations turn the non-linear equations that derive from the Φ-derivable approximations into an initial value problem, offering new practical ways to solve these equations.
Item Description:Published online: 30 December 2010
Im Titel ist das Phi als griechischer Buchstabe dargestellt
Gesehen am 01.12.2017
Physical Description:Online Resource
ISSN:1873-2445
DOI:10.1016/j.physletb.2010.12.058