Exact renormalization group and [phi]-derivable approximations
We show that the so-called Φ-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Φ-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization group...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2011
|
| In: |
Physics letters
Year: 2010, Volume: 696, Issue: 5, Pages: 523-528 |
| ISSN: | 1873-2445 |
| DOI: | 10.1016/j.physletb.2010.12.058 |
| Online Access: | Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/j.physletb.2010.12.058 Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/S0370269310014619 |
| Author Notes: | Jean-Paul Blaizot, Jan M. Pawlowski, Urko Reinosa |
| Summary: | We show that the so-called Φ-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Φ-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization group flow equations. On the other hand, the flow equations turn the non-linear equations that derive from the Φ-derivable approximations into an initial value problem, offering new practical ways to solve these equations. |
|---|---|
| Item Description: | Published online: 30 December 2010 Im Titel ist das Phi als griechischer Buchstabe dargestellt Gesehen am 01.12.2017 |
| Physical Description: | Online Resource |
| ISSN: | 1873-2445 |
| DOI: | 10.1016/j.physletb.2010.12.058 |