Exact renormalization group and [phi]-derivable approximations
We show that the so-called Phi-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Phi-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization g...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
2010
|
| In: |
Arxiv
|
| Online Access: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1009.6048 |
| Author Notes: | Jean-Paul Blaizot, Institut de Physique Théorique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France; Jan M. Pawlowski, Institut für Theoretische Physik, University of Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; Urko Reinosa, Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France. |
| Summary: | We show that the so-called Phi-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Phi-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization group flow equations. On the other hand, the flow equations turn the non linear equations that derive from the Phi-derivable approximations into an initial value problem, offering new practical ways to solve these equations. |
|---|---|
| Item Description: | Im Titel ist das Phi als griechischer Buchstabe dargestellt Gesehen am 01.12.2017 |
| Physical Description: | Online Resource |