Exact renormalization group and [phi]-derivable approximations

We show that the so-called Phi-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Phi-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization g...

Full description

Saved in:
Bibliographic Details
Main Authors: Blaizot, Jean-Paul (Author) , Pawlowski, Jan M. (Author) , Reinosa, Urko (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2010
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1009.6048
Get full text
Author Notes:Jean-Paul Blaizot, Institut de Physique Théorique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France; Jan M. Pawlowski, Institut für Theoretische Physik, University of Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; Urko Reinosa, Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France.
Description
Summary:We show that the so-called Phi-derivable approximations can be combined with the exact renormalization group to provide efficient non-perturbative approximation schemes. On the one hand, the Phi-derivable approximations allow for a simple truncation of the infinite hierarchy of the renormalization group flow equations. On the other hand, the flow equations turn the non linear equations that derive from the Phi-derivable approximations into an initial value problem, offering new practical ways to solve these equations.
Item Description:Im Titel ist das Phi als griechischer Buchstabe dargestellt
Gesehen am 01.12.2017
Physical Description:Online Resource