Convexity of the effective action from functional flows

We show that convexity of the effective action follows from its functional flow equation. Our analysis is based on a new, spectral representation. The results are relevant for the study of physical instabilities. We also derive constraints for convexity-preserving regulators within general truncatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Litim, Daniel F. (VerfasserIn) , Pawlowski, Jan M. (VerfasserIn) , Vergara, Lautaro (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2006
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/0602140
Volltext
Verfasserangaben:Daniel F. Litim, Jan M. Pawlowski, and Lautaro Vergara
Beschreibung
Zusammenfassung:We show that convexity of the effective action follows from its functional flow equation. Our analysis is based on a new, spectral representation. The results are relevant for the study of physical instabilities. We also derive constraints for convexity-preserving regulators within general truncation schemes including proper-time flows, and bounds for infrared anomalous dimensions of propagators.
Beschreibung:Gesehen am 06.12.2017
Beschreibung:Online Resource