ADHM construction of Instantons on the torus

We apply the ADHM instanton construction to SU(2) gauge theory on T^n x R^(4-n)for n=1,2,3,4. To do this we regard instantons on T^n x R^(4-n) as periodic (modulo gauge transformations) instantons on R^4. Since the R^4 topological charge of such instantons is infinite the ADHM algebra takes place on...

Full description

Saved in:
Bibliographic Details
Main Authors: Ford, Chris (Author) , Pawlowski, Jan M. (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2000
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/0005221
Get full text
Author Notes:C. Ford, J.M. Pawlowski, T. Tok, and A. Wipf
Description
Summary:We apply the ADHM instanton construction to SU(2) gauge theory on T^n x R^(4-n)for n=1,2,3,4. To do this we regard instantons on T^n x R^(4-n) as periodic (modulo gauge transformations) instantons on R^4. Since the R^4 topological charge of such instantons is infinite the ADHM algebra takes place on an infinite dimensional linear space. The ADHM matrix M is related to a Weyl operator (with a self-dual background) on the dual torus tilde T^n. We construct the Weyl operator corresponding to the one-instantons on T^n x R^(4-n). In order to derive the self-dual potential on T^n x R^(4-n) it is necessary to solve a specific Weyl equation. This is a variant of the Nahm transformation. In the case n=2 (i.e. T^2 x R^2) we essentially have an Aharonov Bohm problem on tilde T^2. In the one-instanton sector we find that the scale parameter, lambda, is bounded above, (lambda)^2 tv<4 pi, tv being the volume of the dual torus tilde T^2.
Item Description:Gesehen am 06.12.2017
Physical Description:Online Resource