Gauss law operator algebra and double commutators in chiral gauge theories
We calculate within an algebraic Bjorken-Johnson-Low method anomalous Schwinger terms of fermionic currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi identity in an iterative computation. Our method takes the subtleties of the equal-time...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 January 1998
|
| In: |
Physical review. D, Particles, fields, gravitation, and cosmology
Year: 1998, Jahrgang: 57, Heft: 2, Pages: 1193-1202 |
| ISSN: | 1550-2368 |
| DOI: | 10.1103/PhysRevD.57.1193 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevD.57.1193 Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.57.1193 |
| Verfasserangaben: | J.M. Pawlowski |
| Zusammenfassung: | We calculate within an algebraic Bjorken-Johnson-Low method anomalous Schwinger terms of fermionic currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi identity in an iterative computation. Our method takes the subtleties of the equal-time limit into account and leads to an algebra that satisfies the Jacobi identity. The noniterative terms appearing in the double commutators can be traced back directly to the projective representation of the gauge group. |
|---|---|
| Beschreibung: | Gesehen am 07.12.2017 |
| Beschreibung: | Online Resource |
| ISSN: | 1550-2368 |
| DOI: | 10.1103/PhysRevD.57.1193 |