Gauss law operator algebra and double commutators in chiral gauge theories

We calculate within an algebraic Bjorken-Johnson-Low method anomalous Schwinger terms of fermionic currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi identity in an iterative computation. Our method takes the subtleties of the equal-time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pawlowski, Jan M. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 January 1998
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 1998, Jahrgang: 57, Heft: 2, Pages: 1193-1202
ISSN:1550-2368
DOI:10.1103/PhysRevD.57.1193
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevD.57.1193
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.57.1193
Volltext
Verfasserangaben:J.M. Pawlowski
Beschreibung
Zusammenfassung:We calculate within an algebraic Bjorken-Johnson-Low method anomalous Schwinger terms of fermionic currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi identity in an iterative computation. Our method takes the subtleties of the equal-time limit into account and leads to an algebra that satisfies the Jacobi identity. The noniterative terms appearing in the double commutators can be traced back directly to the projective representation of the gauge group.
Beschreibung:Gesehen am 07.12.2017
Beschreibung:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.57.1193