The gauss law operator algebra and double commutators in chiral gauge theories

We calculate within an algebraic Bjorken-Johnson-Low (BJL) method anomalous Schwinger terms of fermionic currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi identity in an iterative computation. Our method takes the subtleties of the equal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pawlowski, Jan M. (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 1997
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/9701029
Volltext
Verfasserangaben:J.M. Pawlowski
Beschreibung
Zusammenfassung:We calculate within an algebraic Bjorken-Johnson-Low (BJL) method anomalous Schwinger terms of fermionic currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi identity in an iterative computation. Our method takes the subtleties of the equal-time limit into account and leads to an algebra that fulfills the Jacobi identity. The non-iterative terms appearing in the double commutators can be traced back directly to the projective representation of the gauge group.
Beschreibung:Gesehen am 07.12.2017
Beschreibung:Online Resource