Hysteresis in the cell response to time-dependent substrate stiffness

Mechanical cues like the rigidity of the substrate are main determinants for the decision making of adherent cells. Here we use a mechano-chemical model to predict the cellular response to varying substrate stiffness. The model equations combine the mechanics of contractile actin filament bundles wi...

Full description

Saved in:
Bibliographic Details
Main Authors: Besser, Achim (Author) , Schwarz, Ulrich S. (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2010
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1007.1092
Get full text
Author Notes:Achim Besser, University of Heidelberg, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Ulrich S. Schwarz, University of Heidelberg, Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany and University of Heidelberg, Institute for Theoretical Physics, Philosophenweg 19, 69120 Heidelberg, Germany
Description
Summary:Mechanical cues like the rigidity of the substrate are main determinants for the decision making of adherent cells. Here we use a mechano-chemical model to predict the cellular response to varying substrate stiffness. The model equations combine the mechanics of contractile actin filament bundles with a model for the Rho-signaling pathway triggered by forces at cell-matrix contacts. A bifurcation analysis of cellular contractility as a function of substrate stiffness reveals a bistable response, thus defining a lower threshold of stiffness, below which cells are not able to build up contractile forces, and an upper threshold of stiffness, above which cells are always in a strongly contracted state. Using the full dynamical model, we predict that rate-dependent hysteresis will occur in the cellular traction forces when cells are exposed to substrates of time-dependent stiffness.
Item Description:Gesehen am 08.12.2017
Physical Description:Online Resource