The spin-flip variant of the algebraic-diagrammatic construction yields the correct topology of S1/S0 conical intersections
While the conventional variants of the algebraic-diagrammatic construction (ADC) scheme for the polarization propagator are generally incapable of correctly describing the topology of S1/S0 conical intersections (CIs), its corresponding spin-flip (SF) variant of third-order ADC (ADC(3)) is herein de...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
July 25, 2017
|
| In: |
Journal of chemical theory and computation
Year: 2017, Jahrgang: 13, Heft: 9, Pages: 4436-4441 |
| ISSN: | 1549-9626 |
| DOI: | 10.1021/acs.jctc.7b00634 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1021/acs.jctc.7b00634 |
| Verfasserangaben: | Daniel Lefrancois, Deniz Tuna, Todd J. Martínez, and Andreas Dreuw |
| Zusammenfassung: | While the conventional variants of the algebraic-diagrammatic construction (ADC) scheme for the polarization propagator are generally incapable of correctly describing the topology of S1/S0 conical intersections (CIs), its corresponding spin-flip (SF) variant of third-order ADC (ADC(3)) is herein demonstrated to successfully reproduce the S1/S0 minimum-energy CI (MECI) of twisted formaldinium (H2C═NH2+). Analytical nuclear excited-state gradients of ADC have been used in combination with the CIOpt program for the optimization of the MECI without the need for nonadiabatic-coupling vectors. For comparison, MS-CASPT2 calculations were performed via conventional CI optimization employing analytical nonadiabatic-coupling vectors. It is shown that SF-ADC(3) yields the correct dimensionality of the CI and overall compares very favorably to the MS-CASPT2 results. |
|---|---|
| Beschreibung: | Im Titel erscheinen die Ziffern 1 und 0 tiefgestellt Gesehen am 13.12.2017 |
| Beschreibung: | Online Resource |
| ISSN: | 1549-9626 |
| DOI: | 10.1021/acs.jctc.7b00634 |