Non-perturbative selection rules in F-theory

We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martucci, Luca (VerfasserIn) , Weigand, Timo (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2015
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1506.06764
Volltext
Verfasserangaben:Luca Martucci and Timo Weigand
Beschreibung
Zusammenfassung:We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.
Beschreibung:Gesehen am 19.12.2017
Beschreibung:Online Resource