Abelian gauge symmetries and proton decay in global F-theory GUTs

The existence of Abelian gauge symmetries in four-dimensional F-theory compactifications depends on the global geometry of the internal Calabi-Yau four-fold and has important phenomenological consequences. We study conceptual and phenomenological aspects of such U(1) symmetries along the Coulomb and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grimm, Thomas W. (VerfasserIn) , Weigand, Timo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 October 2010
In: Physical review. D, Particles, fields, gravitation, and cosmology
Year: 2010, Jahrgang: 82, Heft: 8
ISSN:1550-2368
DOI:10.1103/PhysRevD.82.086009
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevD.82.086009
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.82.086009
Volltext
Verfasserangaben:Thomas W. Grimm and Timo Weigand
Beschreibung
Zusammenfassung:The existence of Abelian gauge symmetries in four-dimensional F-theory compactifications depends on the global geometry of the internal Calabi-Yau four-fold and has important phenomenological consequences. We study conceptual and phenomenological aspects of such U(1) symmetries along the Coulomb and the Higgs branch. As one application we examine Abelian gauge factors arising after a certain global restriction of the Tate model that goes beyond a local spectral cover analysis. In SU(5) grand unified theory (GUT) models this mechanism enforces a global U(1)X symmetry that prevents dimension-4 proton decay and allows for an identification of candidate right-handed neutrinos. We invoke a detailed account of the singularities of Calabi-Yau four-folds and their mirror duals starting from an underlying E8 and E7×U(1) enhanced Tate model. The global resolutions and deformations of these singularities can be used as the appropriate framework to analyze F-theory GUT models.
Beschreibung:Gesehen am 19.12.2017
Beschreibung:Online Resource
ISSN:1550-2368
DOI:10.1103/PhysRevD.82.086009