Stability estimates and numerical comparison of second order time-stepping schemes for fluid-structure interactions

It is well-known that the Crank-Nicolson scheme for pure fluid problems suffers from stability for computations over long-term time intervals. In the presence of fluid-structure interaction in which the fluid equations are reformulated with the help of arbitrary Lagrangian-Eulerian (ALE) mapping, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wick, Thomas (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2013
In: Numerical Mathematics and Advanced Applications 2011
Year: 2013, Pages: 625-632
Online-Zugang:Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-642-33134-3_66
Volltext
Verfasserangaben:T. Wick
Beschreibung
Zusammenfassung:It is well-known that the Crank-Nicolson scheme for pure fluid problems suffers from stability for computations over long-term time intervals. In the presence of fluid-structure interaction in which the fluid equations are reformulated with the help of arbitrary Lagrangian-Eulerian (ALE) mapping, the ALE convection also causes stability problems. In this study, we derive a stability estimate of a monolithically coupled time-discretized fluid-structure interaction problem. Moreover, a numerical comparison of all relevant second order time-stepping schemes, such as secant and tangent Crank-Nicolson, shifted Crank-Nicolson, and Fractional-Step-Theta, is demonstrated. The numerical experiments are based on a benchmark configuration for fluid-structure interactions.
Beschreibung:First online: 04. November 2012
Gesehen am 21.12.2017
Beschreibung:Online Resource
ISBN:9783642331343