Information transport in classical statistical systems

For “static memory materials” the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wetterich, Christof (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 December 2017
In: Nuclear physics. B, Particle physics
Year: 2018, Jahrgang: 927, Pages: 35-96
ISSN:1873-1562
DOI:10.1016/j.nuclphysb.2017.12.008
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/j.nuclphysb.2017.12.008
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0550321317303930
Volltext
Verfasserangaben:C. Wetterich
Beschreibung
Zusammenfassung:For “static memory materials” the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are “quantum simulators”. For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.
Beschreibung:Gesehen am 10.01.2018
Beschreibung:Online Resource
ISSN:1873-1562
DOI:10.1016/j.nuclphysb.2017.12.008