Spectral dimension in causal set quantum gravity

We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eichhorn, Astrid (VerfasserIn) , Mizera, Sebastian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 May 2014
In: Classical and quantum gravity
Year: 2014, Jahrgang: 31, Heft: 12
ISSN:1361-6382
DOI:10.1088/0264-9381/31/12/125007
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1088/0264-9381/31/12/125007
Verlag, Volltext: http://stacks.iop.org/0264-9381/31/i=12/a=125007
Volltext
Verfasserangaben:Astrid Eichhorn and Sebastian Mizera
Beschreibung
Zusammenfassung:We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation.
Beschreibung:Gesehen am 11.01.2018
Beschreibung:Online Resource
ISSN:1361-6382
DOI:10.1088/0264-9381/31/12/125007