Smooth backfitting of proportional hazards: anew approach projecting survival data

Smooth backfitting has proven to have a number of theoretical and practical advantages in structured regression. Smooth backfitting projects the data down onto the structured space of interest providing a direct link between data and estimator. This paper introduces the ideas of smooth backfitting t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hiabu, Munir (VerfasserIn) , Mammen, Enno (VerfasserIn) , Martinez Miranda, Maria Dolores (VerfasserIn) , Nielsen, Jens Perch (VerfasserIn)
Dokumenttyp: Article (Journal) Chapter/Article
Sprache:Englisch
Veröffentlicht: 14 July 2017
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1707.04622
Verlag, kostenfrei, Volltext: https://arxiv.org/pdf/1707.04622.pdf
Volltext
Verfasserangaben:Munir Hiabu, Enno Mammen, Maria Dolores Martinez-Miranda, Jens Perch Nielsen
Beschreibung
Zusammenfassung:Smooth backfitting has proven to have a number of theoretical and practical advantages in structured regression. Smooth backfitting projects the data down onto the structured space of interest providing a direct link between data and estimator. This paper introduces the ideas of smooth backfitting to survival analysis in a proportional hazard model, where we assume an underlying conditional hazard with multiplicative components. We develop asymptotic theory for the estimator and we use the smooth backfitter in a practical application, where we extend recent advances of in-sample forecasting methodology by allowing more information to be incorporated, while still obeying the structured requirements of in-sample forecasting.
Beschreibung:Gesehen am 22.01.2018
Beschreibung:Online Resource