Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations
A multigrid method for the Stokes system discretized with an Hdiv-conforming discontinuous Galerkin method is presented. It acts on the combined velocity and pressure spaces and thus does not need a Schur complement approximation. The smoothers used are of overlapping Schwarz type and employ a local...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
07.08.2015
|
| In: |
Journal of numerical mathematics
Year: 2015, Jahrgang: 23, Heft: 1, Pages: 51-66 |
| ISSN: | 1569-3953 |
| DOI: | 10.1515/jnma-2015-0005 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1515/jnma-2015-0005 Verlag, Volltext: https://www.degruyter.com/view/j/jnma.2015.23.issue-1/jnma-2015-0005/jnma-2015-0005.xml?format=INT |
| Verfasserangaben: | Guido Kanschat and Youli Mao |
| Zusammenfassung: | A multigrid method for the Stokes system discretized with an Hdiv-conforming discontinuous Galerkin method is presented. It acts on the combined velocity and pressure spaces and thus does not need a Schur complement approximation. The smoothers used are of overlapping Schwarz type and employ a local Helmholtz decomposition. Additionally, we use the fact that the discretization provides nested divergence free subspaces. We present the convergence analysis and numerical evidence that convergence rates are not only independent of mesh size, but also reasonably small. |
|---|---|
| Beschreibung: | Im Titel ist die Zeichenfolge div hochgestellt Gesehen am 23.01.2018 |
| Beschreibung: | Online Resource |
| ISSN: | 1569-3953 |
| DOI: | 10.1515/jnma-2015-0005 |