Derivative-extended POD reduced-order modeling for parameter estimation

In this article we consider model reduction via proper orthogonal decomposition (POD) and its application to parameter estimation problems constrained by parabolic PDEs. We use a first discretize then optimize approach to solve the parameter estimation problem and show that the use of derivative inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmidt, Andreas (VerfasserIn) , Potschka, Andreas (VerfasserIn) , Körkel, Stefan (VerfasserIn) , Bock, Hans Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 3, 2013
In: SIAM journal on scientific computing
Year: 2013, Jahrgang: 35, Heft: 6, Pages: A2696-A2717
ISSN:1095-7197
DOI:10.1137/120896694
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1137/120896694
Verlag, Volltext: http://epubs.siam.org/doi/abs/10.1137/120896694
Volltext
Verfasserangaben:A. Schmidt, A. Potschka, S. Körkel, and H. Bock
Beschreibung
Zusammenfassung:In this article we consider model reduction via proper orthogonal decomposition (POD) and its application to parameter estimation problems constrained by parabolic PDEs. We use a first discretize then optimize approach to solve the parameter estimation problem and show that the use of derivative information in the reduced-order model is important. We include directional derivatives directly in the POD snapshot matrix and show that, equivalently to the stationary case, this extension yields a more robust model with respect to changes in the parameters. Moreover, we propose an algorithm that uses derivative-extended POD models together with a Gauss--Newton method. We give an a posteriori error estimate that indicates how far a suboptimal solution obtained with the reduced problem deviates from the solution of the high dimensional problem. Finally we present numerical examples that showcase the efficiency of the proposed approach.
Beschreibung:Gesehen am 29.01.2018
Beschreibung:Online Resource
ISSN:1095-7197
DOI:10.1137/120896694