Generated covariates in nonparametric estimation: a short review

In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context. We review theoretical results on how asymptotic properties of nonparametric es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mammen, Enno (VerfasserIn) , Rothe, Christoph (VerfasserIn) , Schienle, Melanie (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2013
In: Recent Developments in Modeling and Applications in Statistics
Year: 2012, Pages: 97-105
Online-Zugang:Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-642-32419-2_11
Volltext
Verfasserangaben:Enno Mammen, Christoph Rothe, Melanie Schienle
Beschreibung
Zusammenfassung:In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context. We review theoretical results on how asymptotic properties of nonparametric estimators differ in the presence of generated covariates from the standard case where all covariates are observed. These results also extend to settings where the focus of interest is on average functionals of the regression function.
Beschreibung:First online: 13 September 2012
Gesehen am 30.01.2018
Beschreibung:Online Resource
ISBN:9783642324192