More efficient local polynomial estimation in nonparametric regression with autocorrelated errors

We propose a modification of local polynomial time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that must be estimated from the data. We establish the asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiao, Zhijie (VerfasserIn) , Linton, Oliver (VerfasserIn) , Carroll, Raymond J. (VerfasserIn) , Mammen, Enno (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: Dec 2003
In: Journal of the American Statistical Association
Year: 2003, Jahrgang: 98, Heft: 464, Pages: 980-992
ISSN:1537-274X
Online-Zugang:Verlag, Volltext: http://www.jstor.org/stable/30045344
Verlag, Volltext: http://www.jstor.org/stable/pdf/30045344.pdf?refreqid=excelsior:79050497e35fe71e5daeb922943c729f
Volltext
Verfasserangaben:Zhijie Xiao, Oliver B. Linton, Raymond J. Carroll, Enno Mammen
Beschreibung
Zusammenfassung:We propose a modification of local polynomial time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that must be estimated from the data. We establish the asymptotic distribution of our estimator under weak dependence conditions. We show that the proposed estimation procedure is more efficient than the conventional local polynomial method. We also provide simulation evidence to suggest that gains can be achieved in moderate-sized samples.
Beschreibung:Gesehen am 31.01.2018
Beschreibung:Online Resource
ISSN:1537-274X