Extended holomorphic anomaly in gauge theory

The partition function of an N=2N=2{\mathcal {N}=2} gauge theory in the Ω-background satisfies, for generic value of the parameter β=−ϵ1/ϵ2β=−ϵ1/ϵ2{\beta=-{\epsilon_1}/{\epsilon_2}} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity...

Full description

Saved in:
Bibliographic Details
Main Authors: Krefl, Daniel (Author) , Walcher, Johannes (Author)
Format: Article (Journal)
Language:English
Published: 05 October 2010
In: Letters in mathematical physics
Year: 2011, Volume: 95, Issue: 1, Pages: 67-88
ISSN:1573-0530
DOI:10.1007/s11005-010-0432-2
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s11005-010-0432-2
Verlag, Volltext: https://link.springer.com/article/10.1007/s11005-010-0432-2
Get full text
Author Notes:Daniel Krefl and Johannes Walcher
Description
Summary:The partition function of an N=2N=2{\mathcal {N}=2} gauge theory in the Ω-background satisfies, for generic value of the parameter β=−ϵ1/ϵ2β=−ϵ1/ϵ2{\beta=-{\epsilon_1}/{\epsilon_2}} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity together with the (β-dependent) gap structure at the various singular loci in the moduli space completely fixes the holomorphic ambiguity, also when the extension is non-trivial. In some cases, the theory at the orbifold radius, corresponding to β = 2, can be identified with an “orientifold” of the theory at β = 1. The various connections give hints for embedding the structure into the topological string.
Item Description:Gesehen am 25.02.2020
Physical Description:Online Resource
ISSN:1573-0530
DOI:10.1007/s11005-010-0432-2