Extended holomorphic anomaly in gauge theory
The partition function of an N=2N=2{\mathcal {N}=2} gauge theory in the Ω-background satisfies, for generic value of the parameter β=−ϵ1/ϵ2β=−ϵ1/ϵ2{\beta=-{\epsilon_1}/{\epsilon_2}} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
05 October 2010
|
| In: |
Letters in mathematical physics
Year: 2011, Volume: 95, Issue: 1, Pages: 67-88 |
| ISSN: | 1573-0530 |
| DOI: | 10.1007/s11005-010-0432-2 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s11005-010-0432-2 Verlag, Volltext: https://link.springer.com/article/10.1007/s11005-010-0432-2 |
| Author Notes: | Daniel Krefl and Johannes Walcher |
| Summary: | The partition function of an N=2N=2{\mathcal {N}=2} gauge theory in the Ω-background satisfies, for generic value of the parameter β=−ϵ1/ϵ2β=−ϵ1/ϵ2{\beta=-{\epsilon_1}/{\epsilon_2}} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity together with the (β-dependent) gap structure at the various singular loci in the moduli space completely fixes the holomorphic ambiguity, also when the extension is non-trivial. In some cases, the theory at the orbifold radius, corresponding to β = 2, can be identified with an “orientifold” of the theory at β = 1. The various connections give hints for embedding the structure into the topological string. |
|---|---|
| Item Description: | Gesehen am 25.02.2020 |
| Physical Description: | Online Resource |
| ISSN: | 1573-0530 |
| DOI: | 10.1007/s11005-010-0432-2 |