Extended holomorphic anomaly in gauge theory
The partition function of an N=2N=2{\mathcal {N}=2} gauge theory in the Ω-background satisfies, for generic value of the parameter β=−ϵ1/ϵ2β=−ϵ1/ϵ2{\beta=-{\epsilon_1}/{\epsilon_2}} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
05 October 2010
|
| In: |
Letters in mathematical physics
Year: 2011, Volume: 95, Issue: 1, Pages: 67-88 |
| ISSN: | 1573-0530 |
| DOI: | 10.1007/s11005-010-0432-2 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s11005-010-0432-2 Verlag, Volltext: https://link.springer.com/article/10.1007/s11005-010-0432-2 |
| Author Notes: | Daniel Krefl and Johannes Walcher |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 156977689X | ||
| 003 | DE-627 | ||
| 005 | 20220814071743.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180213r20102011xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s11005-010-0432-2 |2 doi | |
| 035 | |a (DE-627)156977689X | ||
| 035 | |a (DE-576)499776895 | ||
| 035 | |a (DE-599)BSZ499776895 | ||
| 035 | |a (OCoLC)1340986675 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Krefl, Daniel |d 1980- |e VerfasserIn |0 (DE-588)138756317 |0 (DE-627)605702527 |0 (DE-576)308951158 |4 aut | |
| 245 | 1 | 0 | |a Extended holomorphic anomaly in gauge theory |c Daniel Krefl and Johannes Walcher |
| 264 | 1 | |c 05 October 2010 | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 25.02.2020 | ||
| 520 | |a The partition function of an N=2N=2{\mathcal {N}=2} gauge theory in the Ω-background satisfies, for generic value of the parameter β=−ϵ1/ϵ2β=−ϵ1/ϵ2{\beta=-{\epsilon_1}/{\epsilon_2}} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity together with the (β-dependent) gap structure at the various singular loci in the moduli space completely fixes the holomorphic ambiguity, also when the extension is non-trivial. In some cases, the theory at the orbifold radius, corresponding to β = 2, can be identified with an “orientifold” of the theory at β = 1. The various connections give hints for embedding the structure into the topological string. | ||
| 534 | |c 2011 | ||
| 700 | 1 | |a Walcher, Johannes |d 1973- |e VerfasserIn |0 (DE-588)1089078978 |0 (DE-627)85098114X |0 (DE-576)459955098 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Letters in mathematical physics |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1975 |g 95(2011), 1, Seite 67-88 |h Online-Ressource |w (DE-627)271348208 |w (DE-600)1479697-1 |w (DE-576)102669082 |x 1573-0530 |7 nnas |a Extended holomorphic anomaly in gauge theory |
| 773 | 1 | 8 | |g volume:95 |g year:2011 |g number:1 |g pages:67-88 |g extent:22 |a Extended holomorphic anomaly in gauge theory |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s11005-010-0432-2 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s11005-010-0432-2 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180213 | ||
| 993 | |a Article | ||
| 994 | |a 2010 | ||
| 998 | |g 1089078978 |a Walcher, Johannes |m 1089078978:Walcher, Johannes |p 2 |y j | ||
| 999 | |a KXP-PPN156977689X |e 2998910572 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Extended holomorphic anomaly in gauge theory","title":"Extended holomorphic anomaly in gauge theory"}],"person":[{"role":"aut","display":"Krefl, Daniel","roleDisplay":"VerfasserIn","given":"Daniel","family":"Krefl"},{"family":"Walcher","given":"Johannes","display":"Walcher, Johannes","roleDisplay":"VerfasserIn","role":"aut"}],"note":["Gesehen am 25.02.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"156977689X","origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"05 October 2010"}],"id":{"doi":["10.1007/s11005-010-0432-2"],"eki":["156977689X"]},"name":{"displayForm":["Daniel Krefl and Johannes Walcher"]},"physDesc":[{"extent":"22 S."}],"relHost":[{"part":{"issue":"1","pages":"67-88","year":"2011","extent":"22","text":"95(2011), 1, Seite 67-88","volume":"95"},"pubHistory":["1.1975/77 -"],"language":["eng"],"recId":"271348208","note":["Gesehen am 01.12.05"],"disp":"Extended holomorphic anomaly in gauge theoryLetters in mathematical physics","type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Letters in mathematical physics","title":"Letters in mathematical physics","subtitle":"a journal for the rapid dissemination of short contributions in the field of mathematical physics"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["271348208"],"zdb":["1479697-1"],"issn":["1573-0530"]},"origin":[{"publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedDisp":"1975-","dateIssuedKey":"1975","publisher":"Springer Science + Business Media B.V ; Kluwer"}]}]} | ||
| SRT | |a KREFLDANIEEXTENDEDHO0520 | ||