The real topological vertex at work

We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krefl, Daniel (VerfasserIn) , Pasquetti, Sara (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2009
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/0909.1324
Volltext
Verfasserangaben:Daniel Krefl, Sara Pasquetti and Johannes Walcher
Beschreibung
Zusammenfassung:We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particular the real vertex with non-trivial fixed leg. We give a careful derivation of the relevant ingredients using duality with Chern-Simons theory on orbifolds. We show that the real vertex can also be interpreted in terms of a statistical model of symmetric crystal melting. Using this latter connection, we also assess the constant map contribution in Calabi-Yau orientifold models. We find that there are no perturbative contributions beyond one-loop, but a non-trivial sum over non-perturbative sectors, which we compare with the non-perturbative contribution to the closed string expansion.
Beschreibung:Gesehen am 25.02.2020
Beschreibung:Online Resource